Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Energy band alignment at interfaces of semiconducting oxides: A review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion rule

Identifieur interne : 001C64 ( Main/Repository ); précédent : 001C63; suivant : 001C65

Energy band alignment at interfaces of semiconducting oxides: A review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion rule

Auteurs : RBID : Pascal:12-0195006

Descripteurs français

English descriptors

Abstract

The energy band alignment at interfaces of semiconducting oxides is of direct relevance for the electrical function of electronic devices made with such materials. The most important quantities of the interface determined by band alignment are the barrier heights for charge transport given by the Fermi level position at the interface and the band discontinuities. Different models for predicting energy band alignment are available in literature. These include the vacuum level alignment (electron affinity rule), branch point or charge neutrality level alignment governed by induced gap states, and an alignment based on the orbital contributions to the density of states (common anion rule). The energy band alignment at interfaces of conducting oxides, which have been experimentally determined using photoelectron spectroscopy with in situ sample preparation, are presented. The materials considered include transparent conducting oxides like In2O3, SnO2, ZnO, and Cu2O, dielectric and ferroelectric perovskites like ( Ba,Sr)Ti03 and Pb(Zr,Ti)O3, and insulators like Al2O3. Interface formation with different contact partners including metals, conducting and insulating oxides are addressed. The discussion focuses on the energy band alignment between different oxides. A good estimate of the band alignment is derived by considering the density of states of the materials involved.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0195006

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Energy band alignment at interfaces of semiconducting oxides: A review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion rule</title>
<author>
<name sortKey="Klein, Andreas" uniqKey="Klein A">Andreas Klein</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Technische Universitat Darmstadt, Department of Materials and Earth Sciences, Petersenstrasse 32</s1>
<s2>64287 Darmstadt</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Darmstadt</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0195006</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0195006 INIST</idno>
<idno type="RBID">Pascal:12-0195006</idno>
<idno type="wicri:Area/Main/Corpus">001E72</idno>
<idno type="wicri:Area/Main/Repository">001C64</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium oxide</term>
<term>Band offset</term>
<term>Band structure</term>
<term>Barium</term>
<term>Barrier height</term>
<term>Charge transport</term>
<term>Copper oxide</term>
<term>Density of states</term>
<term>Electron affinity</term>
<term>Electronic structure</term>
<term>Fermi level</term>
<term>Ferroelectric materials</term>
<term>Gallium phosphide</term>
<term>Indium oxide</term>
<term>Interfaces</term>
<term>PZT</term>
<term>Photoelectron spectroscopy</term>
<term>Photoemission</term>
<term>Pinning</term>
<term>Reviews</term>
<term>Sample preparation</term>
<term>Semiconductor materials</term>
<term>Tin oxide</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Structure bande</term>
<term>Interface</term>
<term>Article synthèse</term>
<term>Spectrométrie photoélectron</term>
<term>Affinité électronique</term>
<term>Hauteur barrière</term>
<term>Transport charge</term>
<term>Niveau Fermi</term>
<term>Structure électronique</term>
<term>Discontinuité bande</term>
<term>Phosphure de gallium</term>
<term>Densité état</term>
<term>Préparation échantillon</term>
<term>Matériau ferroélectrique</term>
<term>Semiconducteur</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Oxyde de zinc</term>
<term>Oxyde de cuivre</term>
<term>Baryum</term>
<term>PZT</term>
<term>Oxyde d'aluminium</term>
<term>Photoémission</term>
<term>Ancrage</term>
<term>GaP</term>
<term>In2O3</term>
<term>SnO2</term>
<term>ZnO</term>
<term>Cu2O</term>
<term>7320A</term>
<term>7320</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The energy band alignment at interfaces of semiconducting oxides is of direct relevance for the electrical function of electronic devices made with such materials. The most important quantities of the interface determined by band alignment are the barrier heights for charge transport given by the Fermi level position at the interface and the band discontinuities. Different models for predicting energy band alignment are available in literature. These include the vacuum level alignment (electron affinity rule), branch point or charge neutrality level alignment governed by induced gap states, and an alignment based on the orbital contributions to the density of states (common anion rule). The energy band alignment at interfaces of conducting oxides, which have been experimentally determined using photoelectron spectroscopy with in situ sample preparation, are presented. The materials considered include transparent conducting oxides like In
<sub>2</sub>
O
<sub>3</sub>
, SnO
<sub>2</sub>
, ZnO, and Cu
<sub>2</sub>
O, dielectric and ferroelectric perovskites like ( Ba,Sr)Ti
<sub>0</sub>
3 and Pb(Zr,Ti)O
<sub>3</sub>
, and insulators like Al
<sub>2</sub>
O
<sub>3</sub>
. Interface formation with different contact partners including metals, conducting and insulating oxides are addressed. The discussion focuses on the energy band alignment between different oxides. A good estimate of the band alignment is derived by considering the density of states of the materials involved.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>520</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Energy band alignment at interfaces of semiconducting oxides: A review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion rule</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>7th International Symposium on Transparent Oxide Thin Films for Electronics and Optics (TOEO-7)</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KLEIN (Andreas)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>HOSONO (Hideo)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>GINLEY (David)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>SHIGESATO (Yuzo)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>KAMIYA (Toshio)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Technische Universitat Darmstadt, Department of Materials and Earth Sciences, Petersenstrasse 32</s1>
<s2>64287 Darmstadt</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Tokyo Tech</s1>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>NREL</s1>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Aoyama-Gakuin U.</s1>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA20>
<s1>3721-3728</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000509778840020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>127 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0195006</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The energy band alignment at interfaces of semiconducting oxides is of direct relevance for the electrical function of electronic devices made with such materials. The most important quantities of the interface determined by band alignment are the barrier heights for charge transport given by the Fermi level position at the interface and the band discontinuities. Different models for predicting energy band alignment are available in literature. These include the vacuum level alignment (electron affinity rule), branch point or charge neutrality level alignment governed by induced gap states, and an alignment based on the orbital contributions to the density of states (common anion rule). The energy band alignment at interfaces of conducting oxides, which have been experimentally determined using photoelectron spectroscopy with in situ sample preparation, are presented. The materials considered include transparent conducting oxides like In
<sub>2</sub>
O
<sub>3</sub>
, SnO
<sub>2</sub>
, ZnO, and Cu
<sub>2</sub>
O, dielectric and ferroelectric perovskites like ( Ba,Sr)Ti
<sub>0</sub>
3 and Pb(Zr,Ti)O
<sub>3</sub>
, and insulators like Al
<sub>2</sub>
O
<sub>3</sub>
. Interface formation with different contact partners including metals, conducting and insulating oxides are addressed. The discussion focuses on the energy band alignment between different oxides. A good estimate of the band alignment is derived by considering the density of states of the materials involved.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C20A</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Structure bande</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Band structure</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Interface</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Interfaces</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Article synthèse</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Reviews</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Spectrométrie photoélectron</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Photoelectron spectroscopy</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Affinité électronique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Electron affinity</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Hauteur barrière</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Barrier height</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Transport charge</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Charge transport</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Niveau Fermi</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Fermi level</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Discontinuité bande</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Band offset</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Discontinuidad banda</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Phosphure de gallium</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Gallium phosphide</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Galio fosfuro</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Densité état</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Density of states</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Densidad estado</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Préparation échantillon</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Sample preparation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Matériau ferroélectrique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Ferroelectric materials</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Oxyde de cuivre</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Copper oxide</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Cobre óxido</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Baryum</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Barium</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>PZT</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>PZT</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde d'aluminium</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Aluminium oxide</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Aluminio óxido</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Photoémission</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Photoemission</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Ancrage</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Pinning</s0>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>GaP</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>SnO2</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Cu2O</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>7320A</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>7320</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>149</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>TOEO-7 International Symposium on Transparent Oxide Thin Films for Electronics and Optics</s1>
<s2>7</s2>
<s3>Tokyo JPN</s3>
<s4>2011-03-14</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C64 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001C64 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0195006
   |texte=   Energy band alignment at interfaces of semiconducting oxides: A review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion rule
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024